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Green’s matrix is constructed for a point force moving along an axis in an isotropic elastic space at sub-, 

super- and transonic speeds. The theory of generalized functions is used to establish an analogue of 

Somigliana’s formula which enables one to construct boundary integral equations (BIEs) for solving 

boundary-value problems with moving loads. 

THE STUDY of transportation in tunnels conveying loads and fluids in conduits leads to model 
problems in which one has to deal with the effect of moving loads in cylindrical cavities in 
continuous media. In the classical case of cavities with circular profiles, such problems can be 
successfully tackled by means of complete or incomplete separation of variables [l]. For more- 
complicated profiles the method of BIEs is more convenient. The point of departure in this method 
is the existence of fundamental solutions. Fundamental solutions for subsonic velocities have been 
known for some time [2, 31. This paper proposes a new, simpler way of constructing fundamental 
solutions, valid in any velocity range; the theory of generalized functions is used to construct BIEs 
for solving problems involving the effect of moving loads in tunnels of arbitrary cross-section. 

1. THE EQUATIONS OF MOTION IN GENERALIZED FUNCTION SPACE 

Let x1 , x2, x3 denote Lagrangian Cartesian coordinates of a point x in a linearity-elastic isotropic 
medium specified in terms of its Lame parameters A, p and the density p; u1 , &ii, Uij will denote the 
Cartesian coordinates of the displacements u, and the strain and stress tensors, respectively. The 
relationship between these quantities is governed by the Cauchy relations and Hooke’s law: 

Eij = ‘12 (Ui,j + Uj,i), (Tij = iUk,kaij + 2yeij (1.1) 

Throughout, the repeated-index summation convention will be used; 6, will denote the 
Kronecker delta, and Ui,j = 8Uilaxj, Ui,jk = a2Ui/dxjdxk. 

Using (l.l), we can reduce the transport equations of the continuous medium 

aij,j + PGi = pUi,tt, 4 j = 1, 2, 3 
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to the form 

(~1’ - C,‘)Uj, ij + cZ'U~, jj - Ui, tt + G+_ = 0 (1.2) 

where cl, c2 are the velocities of the body and shear waves. If Gi = Gi(xl, x2, x3 - ct), then the 
solution of Eq. (1.2) has the same structure, u = u(xi , x2, x3 - ct). In a moving coordinate frame 

(X 1’7 x2’, x3’) = (x1, x2, x3 - ct), Eq. (1.2) becomes (with the prime omitted) 

(~1’ - Cs’)Uj,ij + C,‘Ui,jj - c2Ui, 33 + Gi = 0 (1.3) 

As system (1.2) is strictly hyperbolic, it may have discontinuous solutions [4]. The surface of 
discontinuity (wave front) is a characteristic surface of system (1.2) and propagates through space 
with time. Let F(x, t) = 0 be the equation of such a surface F,, n = (nl , n2, n3) the unit vector 
normal to Ft in R3 : 

nj = F,j 11 grad Ff jl-l, \]gradFt]la = k(2) 
k=l 

v the velocity of Ft in R3 : 

u = -Fit 11 grad Ft jImi (1.4) 

Let F denote “the same” surface, but in R4 = R3 X t, where it is at rest v = (vi, . . . , u4) the 
normal to Fin R4 : 

Yj = F, I II grad F llwl, IIwdFl12 = t(q) 

The surface F is defined by the equation 

3 

Vt=+Cj - 1/ 2 4, j = 1,2, vt = vq 
k=l 

(1.5) 

It follows from (1.5) and (1.4) that v is one of the sonic velocities cl, c2. 
The requirement that the displacements remain continuous across the front, which is necessary in 

order to maintain the continuity of the medium 

[UiJFt c 0 (1.6) 
leads to well-known kinematic compatibility conditions for the solutions [4]: 

lUi,tnj + VUi,jJFt = 0 (1.7) 

(the continuity of the tangential derivatives), and in addition Eqs (1.2) imply the dynamical 
compatibility conditions 

[oijnj + PVUi, tlFt = 0 (1.8) 

Here [flF, denotes the jump in f across Ft : [fini] F, & ni[fi] F,. 
Let us see how these conditions transform for solutions of Eqs (1.3). The characteristic surface T 

must satisfy the equation 

det {(cl2 - C32)ninj + 6ij (C3' - c2n32)} = 0 (1.9) 

whose roots, by (1.5), are 
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n3 = JrMj-’ = -&CjlC, j = 1, 2 (1.10) 

Here n = {ni > is the unit normal vector to T and &Ii are the Mach numbers. 
Since n3 d 1, this implies that h4j 3 1, i.e., discontinuous solutions may occur only if the loads are 

supersonic or sonic. In that case the conditions at the fronts are 

IUJT = 0, [uu~, j - Cnjui, SIT = 0 (1.11) 

ioijnj - f3UCZC;, 311’ = 0 (1.12) 

By (1.10) and (1.4), v = 0z3 ; substituting this into (1.12), we get 

(Gijrzj - pcz~~~~,~J~ = 0 (1.13) 

To construct fundamental solutions, we have to introduce singular body forces in Eqs (1.3); this, 
in turn, requires us to write the equations, with due attention to conditions (1.11) and (1.13), in the 
space of generalized functions. As the test function space D3(R3) we take the space of compactly- 
supported infinitely differentiable vector-values functions cp(x) = {cpi (x), . . . , q3(x)) defined on 
R3. The dual is the space of generalized vector-valued functions D3’(R3); henceforth we shall say 
simply “function” for “vector-valued function”. Convergence is defined in the same way as 
convergence in D (RN) and D’ (RN) [5,6]. 

Let u(x) be any classical solution of (1.3) which is continuous and twice piecewise differentiable 
almost everywhere, except perhaps on the surfaces where conditions (1.1 l)-( 1.13) are satisfied. Let 
u*(x) denote the generalized function corresponding to u(x): U” = U, i.e. 

(u*, cp) = 1 ui(x)cpiP)~~, vrp~D,F,) (1.14) 
R. 

The integration is performed over R 3, or more precisely, over part of it, as q(x) has compact 
support. 

We will now introduce the generalized stress and strain tensors oij* and &ii*, respectively, defined 
by Eqs (1.1) but now in the generalized sense. 

The characteristic function of the set T, = {x: T(x) >O) (where T(x) = 0 is the equation of the 
surface T) is defined as follows: 

I 1, T (x) > 0 
IiT+ (x) = l/z, 

i 

T (x) = 0 
0, T (x) < 0 

Similarly we define T- and Hr- : HT- -I- HT+ = 1. It is known [S] that 

H$, j = +nj& (X) 

%, j *- - ui,j + [uinjJT6T (x) 

where or(x) S=(x) is a simple layer on T: 

(a&> (p) = \ ai (4 cpi (x) AS, vcp E D, (R3) 

i. 

(1.15) 

(1.16) 

(1.17) 

(1.18) 

The first term on the right in (1.17) is the classical derivative of ui . 
It follows from these relationships that 
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03, i - PC24 33 t pci * = [aijnj - PC’~,U~,~JT~T f {[hUl,nk8ii f 

+ ~1 (Uinj + Ujn,)JT6T},j - {Iu~~~JT~T}, 3 
(1.19) 

It is obvious that the density OL (x) of the simple layer is identical with the dynamical compatibility 
conditions for solutions of (1.13) and vanishes. Conditions (1.11) imply that the density p (X ) of the 
double layer {P (X)Zr(X)},j 1 a so vanishes. Thus the right side of (1.19) vanishes. Thus the 
displacements expressed in terms of generalized functions satisfy the same equations (1.3), but now 
in the generalized sense. 

2. THE SOMIGLIANA FORMULA FOR MOVING LOADS 

Let U,*(x) be a fundamental solution of Eqs (1.3) corresponding to a body force G* = 6,6(x), 
where 6 (x) is a delta-function in D’ (Rs) [6]: 

(Cl2 - Cz2) UTk,ij + C22U&, jj - C2h$,3, + 6ik6 (X) = 0 (2.1) 

We define tensors corresponding to Gi * = 6$ (x-y) 

ukj tx7 Y) = Ukj* tx - Y) 

rij (x7 y7 n) = hUkj,k + pnk (uij,k + ukj.i) 

Tij (X7 Y, n) = rji (Y, x, n) (2.2) 

Now it is well known [5, 61 that the displacements corresponding to any given body force G* are 
determined by the following convolution: 

u* = Uij* *Gj* = 1 Uij (~9 y) Gj*(Y)dV(y) (2.3) 
R8 

where the last equality holds for regular Uij* and Gi*. 
Let S, be an elastic medium, bounded by a smooth cylindrical surface S, along which the load is 

moving in the direction of the x3 axis at a constant velocity c : 

aijnj = pi (221, X2, 23 - Ct), X E S (2.4) 

where n = {ni} is the outward unit normal vector to S. Clearly, 

72, = 0 (2.5) 

There are no body forces. Let u(x) be a solution of Eqs (1.3) in the moving coordinate frame, 
satisfying (2.4) in S,. Consider the generalized function u* (x) = u(x) Hs+ (x). Following the 
reasoning of Sec. 1, we obtain the following equations for this function, analogous to (1.19): 

* 2s - 
Oij,j - PC 4,33 - -(Pi - Pc2n3ui,3)6S (x) + {n3ui6S (X)),3 - 

- {(3Luknk6ij f p (uinj + ujni))aS (X)},j (2.6) 

where the jump is now replaced by the values of the expressions on 5, because u* = 0 outside 
S, + S. Following (2.3) and using (2.5) and the rules for the differentiation of convolutions [5], we 
obtain 

P%* = uik* * PkGS $_ ((kuknk61j + P (urnj + ujn,))6S * UTl>,j (2.7) 
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or 

pui* = U,,” * pk& + (huNnk61j i- p @In1 + ujn*))bS * @!,I P.8) 

If Uik* and Uik,j* are regular generalized functions, the last equality may be written in integral 
notation. However, it has been shown that, depending on the velocity of motion c, the tensor Uik* 
or its derivatives may become singular. For such Uik* it is convenient to use (2.7). In particular, if 
U;k* is regular, then all the convolutions in (2.7) can be written in integral notation and the integrals 
then differentiated by the usual rules. 

We will use the following corollary of (2.1): 

uij tx, Y) = Uii (Yl x) = uji txv y) 

and the equality 

U’* Z -Uij,,, 137 Xk 

to rewrite (2.8) formally in integral notation, transforming the dummy indices with the aid of (2.2). 
The result is 

u.* = i tUik (X9 Y) r)k (Y) - Tik tx, Y, n ty)) uk (Y)) dS (Y) z (2.9) 

This formula, formally the same as the Somigliana formula of static elasticity theory [3], expresses 
the displacements in the interior of the domain in terms of the boundary values of the displacements 
and the stresses. For Lyapunov surfaces, if x E S the formula gives a BIE for solving boundary-value 
problems with moving loads, In that case, however, the integrals must be regularized in some way, 
depending on the properties of the kernels Uii and TiiI The latter depend essentially on the velocity 
c. It has been shown that (2.9) as it stands is true only at subsonic velocities of the moving load 
(c < cz), while for x E S the second integral is evaluated as a singular integral in the principal-value 
sense. For supersonic velocities (c3c2) one uses (2.7) to construct a regular analogue of the 
Somigliana formulae. 

3. THE GENERALIZED FOURIER TRANSFORM 

We will first describe some constructive algorithms for computing Fourier and inverse Fourier 
transforms of locally integrable slowly increasing functions in RI [5], which we will then use to 
determine Uii*. 

Letf(x) be a locally integrable slowly-increasing function in R 1. It Fourier transform is defined as 
M 

F, [f] = 7 (E) = lim s 
f (x) &x-Elx/ /jz, &>O (3.1) 

E-0 -_dD 

It is convenient to use the representation 

f (4 = f+ (4 + f_ (4 

where f& = fH( 4x), H(x) being the Heaviside function. By (2.1)) 

(3.2) 



Fundamental solutions in an elastic space 719 

The limits are evaluated here in the sense of the convergence of generalized functions [5]. The 
integrals in (2.1) exist thanks to the slow increase inf(x); moreover: 

(a)J+(Q is analytic if Imt>O,f++O as Imi+ +m, 
(b)f_(~)isanalyticifIm~<O,f_+OasIm~-+-m. 
Since 

f, (E + is) = FJf+ (z) e-erl, ,f, (E - is) = F, if_ (x)cexJ 

(in terms of the classical Fourier transform), we can use the inverse transform 

Hence 

f+ (x) e-ex = & j f+ (E + ie) e-i@ dE = < 

W+iE 

S f, (EJ e-i%r dt 
--co -cc+ie 

m+ie 

f+(x) = & s f, (E) e-iEx d& V’E > 0 
--oo+ie 

A similar formula holds for f- (x). 
Summing, we obtain 

f(2)= &( =s” - 

m-4 

f+ (8 e-@ Q + 1 f_ (8) e-@ Q) (3.3) 
--oJ+ie -a&e 

Obviously, this is also true for ordinary functions that have classical Fourier transforms. The 
Fourier transforms of locally integrable slowly-increasing functions have singularities on the real 
axis 5’ of the complex plane 5 = 6’ + is”, so that formulae (3.3) can be conveniently used to 
determine the source function. 

However, the available information usually includes f(c), rather than f+ and f_. If f(c) admits of 
the representation 

f (E) = f+ (E) + f- (E) (3.4) 
where f+ and f- have properties (a) and (b), respectively, we call this representation a factorization. 
A function that has singularities on the real axis may have more than one factorization. A simple 
example is 

f(E) = - + , f’(E) = -$- ( f-(E) = - Jq- 

where A is any constant. Using (3.3), we obtain 

f (X) = f_.4 (2) = AH (Z) - (1 - A)H (-Z) 

In particular, fa(x) = -H(-x), fi(x) = H(x). C onsequently, for this function j(EJ we have a 
whole class of locally integrable slowly-increasing functions, so that determination of the source 
function here involves taking its specific properties into account. 

In particular, if f(x) = 0 for x > 0, then f+ (5) + 0; if f(x) = 0 for x < 0, then f_ (5) = 0. 
Let us convolve these functions with H(x): 

g, (4 = f, k-)*H (4 = H (4 f f, (Y) dy, g- (2) = f_ (2) * H (- z) = 
0 

=&C--s) {f_(y)dy. 
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Using (3.1) and inverting the order of integration, we obtain 

& (E) = i& $ I:,‘:?, & * “:(;; W 
- (3.5) 

Let f(c) =f- (E) +f+ (5). Define the natural factorization of the function f(k)lit to be the 
expression 

(3.6) 

Using (3.5) we get 

(3.7) 

4. GREEN’S TENSOR 

Taking the Fourier transform of (2.1), we get an equation for the transform of Green’s tensor 

Qij* = 8ijci2 (I] [ \I” -_ Ms2$,3”)-l + & ((II S II” - W&“)-’ - (II g II” - M2”&32)-1) 

Depending on the value of Mj , the source matrix U, will have different forms. 

(4.1) 

(4.2) 

,. _, 
Subsonic loads. Let mj = VI1 - Mj’( If C< Cj (Mj< I), then to determine II,* we have to find the 

sources of the transforms 

foj = (El” + E2” + mj2Cd3')-" 

and their primitives as functions of x3. Note that faj is the Fourier transform of a fundamental 
solution of the equation 

(4.3) 

which transforms, by a change of variables y1 = xl, yz = x2, ys = xs/mj, to the Laplace equation, 
whose Green’s function is known [5]. The Fourier transform is 

i” gz,vP?,a [14nWI = II S ll-2, R = l/r~? + ~2~ + ys2 

whence we obtain, by again changing variables, 

foj (r, X3) = (4TC 1/‘X9” + ntj2P)-‘, r == fXlz + Xs2 



Fundamental solutions in an elastic space 721 

_ - 
The function fzj = fojl(&) 2 is the Fourier transform of the class of fundamental solutions of the 

equation 

aa aa 
-@- ( -+ all= &+ rnj$$+D = -4(X) (4.4) 

which can be expressed as tp = a6 + Qtc, where cP8 is a particular fundamental solution of (4.4), @a a 
solution of the homogeneous equation corresponding to (4.4). To determine (I?,, we use the natural 
factorization (3.7) offq(@l(i&) as a function of ea. Define 

fkj = @f>,j, k = 0, ‘I; fij = cD,j - (~~)-‘m~~ 

By (4.3), the function @, satisfies Eq. (4.4). Since the term mjr is a solution of the corresponding 
homogeneous equation, fzj(rl x3) is also a fundamental solution of the same equation. We shall use 
it to construct U+*. 

It follows from (4.1) that 

uY,,i = c1-2f*l,j 

Differentiating, we obtain formulae identical with those obtained in [2] by direct inversion of the 
transforms of the solutions: 

u,,* = -.L 
4ncaa [ -&++$$-(++) -$(IY--V,+)] 

u,,* =: 1 
4xcza &+ g-(&-&)-&w-b+)] 

Ua3*= -i-$(-&-m 
1 - 

1 2a Va+ > 

uj3* =-~(-&-g+ ]==1,2 

ul,* = * v1+ I -Ka+)+~!s* +-+)] ( 
Since when P+ 0, x3 f 0, 

and so the tensor Uij* has removable singularities on the line r = 0, in addition to the point x = 0. As 
R-+0 we have Uij* -const/R, Tij* -constlR2, R = I/X/, and it can be shown that the integrals in 
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(2.9) either exist for xES+ or exist in the principal-value sense for xES. The construction of the 
BIE in this case proceeds as in the static theory of elasticity and can be accomplished by going to the 
limit in (2.9). 

Supersonic loads. If c> cj (Mj> 1) we must determine the sources of the transforms 

Clearly, the support of goj must lie on the negative half-axis x3 <O, since the load “outstrips” the 
perturbations propagating in the medium. Using the fundamental solution of the wave equation [5], 
we obtain 

RrJj (F, 2,) = 
H (-x3- mir) 

2nvj- 9 glj = 

1's 

=- 
II(-x3-mjr) 

2n 
In Ix31tVj- 

i mjr 11 gzj=-HH-x.J X 

0 

’ X 
s 

Rlj (r’t Y) dy = - 
H (-x3- mjr) 

2x 
xs 

Hence, in the intermediate (transonic) range (c2 < c < cl ): 

uij* = 6ijCz-2g02 (r, %) + 0 (/*I (r, X3) - g22 (r, xJ),ij (4.5) 

For supersonic velocities (c> cl) we must replacef2i in (4.5) by gzl . 
As follows from the formulae, the fronts obtained in these cases are conical surfaces: 1 x3 ( = mjr, 

x3<o,j= 1,2. 
At transonic velocities there is just one such front, downstream from which there propagates only 

a body deformation, while upstream there is also a shear deformation. At supersonic velocities 
(c> cl) there are two fronts; the medium downstream from the leading front is at rest. The fronts 
propagate at velocities cl, c2, respectively. 

Sonic loads. If c = cj we have mj = 0, and then 

ha (r, G) = F&i, [(El” + E22)-‘] = -(an)-1s (ZJ In r 

Here we have used the fundamental solution of the two-dimensional Laplace equation [5]. 
Similarly, following (3.7), we obtain 

hi (F, X3) = (2n)-‘6 (X3)1 n F ax, H (-.z+J = (2n)-lH (-x3) In r 

h, (F, 2,) = -(2n)-iH (-X3) 1 n r er, H (-x3) = (2~)~ix,H (--1~~) In r 

If c = c2: 

Uij* = Czm26ijho ( F, %) + C-’ (f21 (FY 12) - h2 (r, zJ),ij 

If c = cr : 

uij* = c2 -2&jk?o2 b-9 X2) + C-’ (h2 b-7 %I) - &a (r, %))A 
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At sonic velocities, the wave front corresponding to c = ci is perpendicular to the x3 axis and 
coincides with the x1x2 plane in the moving coordinate frame. 

To derive an integral analogue of the Somigliana formula and a BIE in the supersonic case, one 
has to use formulae (2.7), since the integrals in (2.9) fail to exist not only on the boundary (x E S) 
but even inside the domain (x E S,). This arises from the existence of non-integrable singularities of 
the kernel Tij on the fronts, implying the need for non-trivial regularization of the integrals in (2.7) 
before differentiation. 
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